# Effects of additives on sintering and some properties of calcium phosphates with various Ca/P ratios

TAKAFUMI KANAZAWA, TAKAO UMEGAKI, KIMIHIRO YAMASHITA Department of Industrial Chemistry, Faculty of Technology, Tokyo Metropolitan University, Fukasawa 2-1-1, Setagaya-ku, Tokyo 158, Japan

HIDEKI MONMA National Institute for Research in Inorganic Materials, Tsukuba-shi, Ibaraki 305, Japan

TATSUSHI HIRAMATSU Nihon Cement Co. Ltd, Ootemachi, Chiyoda-ku, Tokyo 100, Japan

The effects were studied of additives on the sintering and properties such as the compressive strength and chemical durability of ceramics of calcium pyrophosphate, tricalcium phosphate and hydroxyapatite. In improving the compressive strength of these calcium phosphates, the effect of additives was found to be in the order  $Na_2O \gg CaF_2 > MgO \gg Al_2O_3$ ,  $SiO_2$  for the case of single-doping, and was most marked in the combination of  $Na_2O-MgO-Al_2O_3$  for the complex addition. It was also found that the chemical durability of the calcium phosphates was improved greatly by using a single or complex additives.

### 1. Introduction

Because of their excellent biocompatibility, ceramics of calcium phosphates, especially hydroxyapatite Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> (denoted as HAp here) and tricalcium phosphate  $Ca_3(PO_4)_2$  (TCP) [1-3], have attracted much attention as bio-implant materials. A large part of the recent studies have been devoted to improving the mechanical properties of sintered calcium phosphates. To date, using very dense ceramics with or without additives, strengths comparable with or superior to those of human bone and tooth have been realized. Contrasting with dense ceramics, the mechanical properties of porous ones are inferior [4, 5]. However, on considering biocompatibility, as reported in [6], porous sinters of calcium phosphates have the advantage of being completely converted to natural bone, although their application is restricted to places that are not subjected to high stress. It is therefore valuable to strengthen porous sinters of calcium phosphates. This study was undertaken to investigate the effects of additives on the fundamental properties of various calcium phosphates.

# 2. Material preparation

Reagent-grade calcium phosphate dihydrate  $(CaHPO_4 \cdot 2H_2O)$  and anhydrous calcium carbonate  $(CaCO_3)$  were employed as the sources for calcium and phosphorus. Both reagents were pretreated at 120 °C for 10 h for dehydration and decarbonation, respectively. Silica was prepared by drying quartz

0022-2461/91 \$03.00 + .12 © 1991 Chapman and Hall Ltd.

powder washed in 1 wt % HCl aqueous solution. Other additives such as  $Na_2O$ , MgO and  $Al_2O_3$  were used after drying reagent-grade powders.

Starting powders with or without additives, in the ratios listed in Table I, were mixed by shaking in a polystyrene bottle. The Ca/P ratio was taken as 2, 3 and 4 as CaO/P<sub>2</sub>O<sub>5</sub>. For simplicity, the materials employed are hereafter referred to by the symbolized names given in Table I. Mixed powders were calcined at 800 to 1100 °C for 1 to 10 h, depending on the type and concentration of additives. With pellets of 200-mesh sieved calcines uniaxially pressed at 3.7 Pa, sintering was carried out at 885 to 1200 °C for 4 to 44 h. These temperatures were determined from differential thermal analysis (DTA) and were dependent on the composition of the specimen. The typical size of a sinter was 10 mm in diameter and 15 mm thickness.

### 3. Experimental procedure

For the identification of the phases present in the products after calcination or sintering, X-ray diffraction (XRD) and infrared (IR) absorption analyses were performed on powders or pellets. The mechanical and chemical properties of sinters were studied in order to evaluate the effects of additives. The compressive strengths were measured on cylindrical sinters with various phases and porosities. The chemical durability was estimated by the weight change of sintered bodies immersed in water, citric acid or sodium hydroxide aqueous solutions.

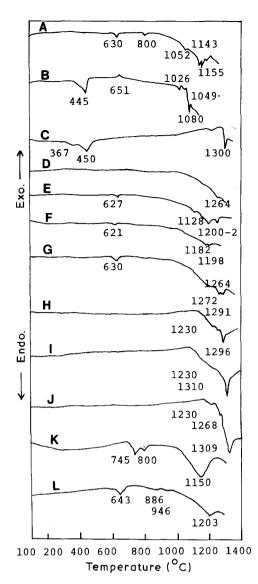
| Specimen               | CaO/P2O5ª | Additive (molar ratio to $P_2O_5$ ) |           |                                |                  |                  | Calcination/sintering $({}^{\circ}C)$ time (b) |                              |
|------------------------|-----------|-------------------------------------|-----------|--------------------------------|------------------|------------------|------------------------------------------------|------------------------------|
|                        |           | Na <sub>2</sub> O                   | MgO       | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | CaF <sub>2</sub> | CaSO <sub>4</sub>                              | - temperature (° C)-time (h) |
| $2CaO \cdot P_2O_5$    | 2         |                                     |           |                                |                  |                  |                                                | 9006/115011                  |
| 2N005-05               | 2         | 0.05 - 0.5                          |           |                                |                  |                  |                                                | 800 980-4-5/885 1050-4-44    |
| 2M01, 05               | 2         |                                     | 0.1, 0.5  |                                |                  |                  |                                                | 1150-4/1050-3-7              |
| 2A01, 05               | 2         |                                     |           | 0.1, 0.5                       |                  |                  |                                                | 1150-1-4/1050-3-6            |
| 2801, 05               | 2         |                                     |           |                                | 0.1, 0.5         |                  |                                                | 900-4-6/1150-5-19            |
| 2MA01                  | 2         |                                     | 0.1       | 0.1                            |                  |                  |                                                | 900-4/1150-7                 |
| 2MS01                  | 2         |                                     | 0.1       |                                | 0.1              |                  |                                                | 900-4/1150-7                 |
| 2AS01                  | 2         |                                     |           | 0.1                            | 0.1              |                  |                                                | 900-4/1150-7                 |
| 2NMAS05                | 2         | 0.5                                 | 0.5       | 0.5                            | 0.5              |                  |                                                | 1100-10/1200-10              |
| $3CaO \cdot P_2O_5$    | 3         |                                     |           |                                |                  |                  |                                                | 900-4/1150-10                |
| 3N005-05               | 3         |                                     | 0.05, 0.5 |                                |                  |                  |                                                | 900-4/1150-10                |
| 3M01, 05               | 3         |                                     | 0.1, 0.5  |                                |                  |                  |                                                | 900-4/1150-7                 |
| 3A01, 05               | 3         |                                     | ••••, ••• | 0.1, 0.5                       |                  |                  |                                                | 900-4/1150-7                 |
| 3801, 05               | 3         |                                     |           | ,                              | 0.1, 0.5         |                  |                                                | 900-4/1150-7                 |
| 3NM01                  | 3         | 0.1                                 | 0.1       |                                | 0.1, 0.0         |                  |                                                | 900-4/1150-7                 |
| 3NA01                  | 3         | 0.1                                 | 0.1       | 0.1                            |                  |                  |                                                | 900-4/1150-7                 |
| 3NS01                  | 3         | 0.1                                 |           | 0.1                            | 0.1              |                  |                                                | 900-4/1150-7                 |
| 3MA01                  | 3         | 0.1                                 | 0.1       | 0.1                            | 0.1              |                  |                                                | 900-4/1150-7                 |
| 3MS01                  | 3         |                                     | 0.1       | 0.1                            | 0.1              |                  |                                                | 900-4/1150-7                 |
| 3AS01                  | 3         |                                     | 0.1       | 0.1                            | 0.1              |                  |                                                | 900-4/1150-7                 |
| 3NMA01                 | 3         | 0.1                                 | 0.1       | 0.1                            | 0.1              |                  |                                                | '                            |
|                        | 3         | 0.1                                 | 0.1       | 0.1                            | 0.1              |                  |                                                | 1100-10/1300-10              |
| 3NMS01                 | 3         | 0.1                                 | 0.1       | 0.1                            | 0.1              |                  |                                                | 1100-10/1300-10              |
| 3NAS01                 |           | 0.1                                 | 0.1       |                                |                  |                  |                                                | 1100-10/1300-10              |
| 3MAS01                 | 3         | 0.5                                 | 0.1       | 0.1                            | 0.1              |                  |                                                | 1100-10/1300-10              |
| 3NMAS05                | 3         | 0.5                                 | 0.5       | 0.5                            | 0.5              |                  |                                                | 1100-10/1400-10              |
| $10/3CaO \cdot P_2O_5$ | 10/3      | 0.1                                 |           |                                |                  |                  |                                                | 1100-10/1400-10              |
| 10/3N01                | 10/3      | 0.1                                 |           |                                |                  |                  |                                                | 1100-10/1400-10              |
| $4CaO \cdot P_2O_5$    | 4         |                                     |           |                                |                  |                  |                                                | 1100-10/1400-10              |
| 4NMA01                 | 4         | 0.1                                 | 0.1       | 0.1                            |                  |                  |                                                | 1100-12/1400-10              |
| 4NMS01                 | 4         | 0.1                                 | 0.1       |                                | 0.1              |                  |                                                | 1100-12/1400-10              |
| 4NAS01                 | 4         | 0.1                                 |           | 0.1                            | 0.1              |                  |                                                | 1100-12/1400-10              |
| 4MAS01                 | 4         |                                     | 0.1       | 0.1                            | 0.1              |                  |                                                | 1100-12/1400-10              |
| 4NMAS05                | 4         | 0.5                                 | 0.5       | 0.5                            | 0.5              |                  |                                                | 1100-12/1400-10              |
| $5CaO \cdot P_2O_5$    | 5         |                                     |           |                                |                  |                  |                                                | 1100-10/1400-10              |
| $6CaO \cdot P_2O_5$    | 6         |                                     |           |                                |                  |                  |                                                | 1200-10/1400-10              |
| 2F01                   | 2         |                                     |           |                                |                  | 0.1              |                                                | 1100-10/1200~10              |
| 3F01                   | 3         |                                     |           |                                |                  | 0.1              |                                                | 1100-10/1400-10              |
| 4F01                   | 4         |                                     |           |                                |                  | 0.1              |                                                | 1100-10/1400-10              |
| FAC                    | 10/3      |                                     |           |                                |                  | 1/3              |                                                | 1200-6/1300-7                |
| FACN01                 | 10/3      | 0.1                                 |           |                                |                  | 1/3              |                                                | 1200-6/1300-7                |
| FACN05                 | 10/3      | 0.5                                 |           |                                |                  | 1/3              |                                                | 1100-6/1300-7                |
| FACNM01                | 10/3      | 0.1                                 | 0.1       |                                |                  | 1/3              |                                                | 1100-6/1300-7                |
| 2G1                    | 3         |                                     |           |                                |                  |                  | 1                                              | 900-14/1300-10               |
| 2G2                    | 4         |                                     |           |                                |                  |                  | 2                                              | 900-14/1300-10               |

TABLE I Composition, notation and the conditions for the calcination and sintering of specimens

<sup>a</sup> Molar ratio.

# 4. Results and discussion

# 4.1. Sintering behaviour


Some results of DTA are shown in Fig. 1, in which the endothermic peaks around  $450 \,^{\circ}\text{C}$  are attributed to the decomposition reaction of calcium hydrogen phosphate to calcium pyrophosphate (C<sub>2</sub>P):

$$2CaHPO_4 \rightarrow Ca_2P_2O_7 + H_2O(g)$$

The mixture with  $Na_2CO_3$  added shows endothermic peaks around 630 and 850 °C, which can, respectively, arise from the solid-state reaction between calcium phosphate and sodium oxide, and the decomposition (851 °C) or melting (852 °C) of unreacted  $Na_2CO_3$ . As can be seen from the figure, the possible solid-state reactions of all specimens are apparently completed up to 1400 °C; sintering temperatures were chosen for each specimen as those indicated in Table I. In Table II, the apparent densities of the sintered bodies are listed together with the porosities, which were calculated from the true densities measured for crushed powders by picnometry. As a whole, Na<sub>2</sub>O addition seems to promote sintering, since specimens with Na<sub>2</sub>O added exhibited a larger shrinkage during cintering. Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> and MgO appear to have no significant effect on the sintering of the present materials.

# 4.2. Crystal phases of calcium phosphates with various additives

Crystal phases present in the calcined and sintered specimens were dependent mainly on the Ca/P ratio. Those identified by XRD are shown in Table III. At a Ca/P ratio of 2, the main phase was  $C_2P$  in undoped



*Figure 1* Differential thermal analysis of various calcium phosphates. Specimens: A, 2N05; B, 2M05; C, 2A05; D, 2S05; E, 2NM01; F, 2NA01; G, 2NS01; H, 2MA01; I, 2MS01; J, 2AS01; K, 2NMAS05 and L, 3NMAS05.

| TAE | BLE | Π | Density | and | porosity |
|-----|-----|---|---------|-----|----------|
|-----|-----|---|---------|-----|----------|

| Specimen               | Bulk density<br>(g cm <sup>-3</sup> ) | True density<br>(g cm <sup>-3</sup> ) | Porosity<br>(%) |
|------------------------|---------------------------------------|---------------------------------------|-----------------|
| $10/3CaO \cdot P_2O_5$ | 1.93                                  | 3.18                                  | 39.1            |
| $5CaO \cdot P_2O_5$    | 2.09                                  | 3.28                                  | 36.2            |
| 4NMA01                 | 2.38                                  | 3.07                                  | 22.3            |
| 2NMAS05                | 2:48                                  | 3.04                                  | 18.1            |

specimens, whereas  $\beta$ -TCP was obtained as the main or a second phase in the specimens with more than 10 mol % oxide additives such as Na<sub>2</sub>O, MgO, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>.

At Ca/P = 3 and 10/3 the dominant phase was  $\beta$ -TCP in all of the calcined and sintered specimens with additives.

At Ca/P = 4 the result was complex, since HAp,  $\alpha$ - and  $\beta$ -TCP phases were found, depending on the combination of additives. In the sintered specimens 4NMA01 and 4NMS01, HAp was the main phase, whereas  $\beta$ -TCP was observed in 4NAS01 and 4MAS01 sinters. In 4NMAS05,  $Ca_5Na_2P_4O_{16}$  and  $MgAl_2O_4$  were produced during sintering.

In the specimens with  $CaF_2$  added, fluorapatite (FAp:  $Ca_{10}(PO_4)_6F_2$ ) was obtained in addition to  $\beta$ -TCP. In FACN05  $\beta$ -CaNaPO<sub>4</sub> was obtained.

In specimens with CaSO<sub>4</sub> added 2G1 (Ca/P = 3) and 2G2 (Ca/P = 4),  $\beta$ -TCP and HAp were obtained as the single phase.

Phase analysis was also carried out by means of IR spectroscopy. The IR spectra of some additive-bearing specimens are shown with standards in Fig. 2. HAp can be distinguished by the absorption at around  $3500 \text{ cm}^{-1}$  from C<sub>2</sub>P and TCP. C<sub>2</sub>P and TCP were distinguished from each other in the absorption peak at around  $725 \text{ cm}^{-1}$ . Using those peaks, most of the phases identified by XRD were confirmed by IR analysis.

# 4.3. Effects of porosity, additive and Ca/P ratio on the compressive strength of sintered calcium phosphates

The effect of porosity on the compressive strengths ( $\sigma$ ) of sinters of various calcium phosphates is shown in

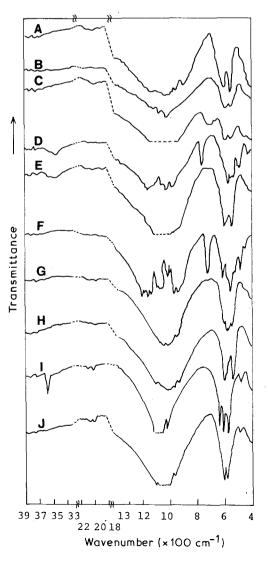



Figure 2 Infrared absorption spectra of various calcium phosphates. Specimens: A, 3NMA01, 3NAS01, 3MAS01; B, 4NMA01, 4NAS01; C, 2NMAS05; D, 2F01; E, 2G1; F,  $\alpha$ -TCP; G,  $\beta$ -TCP; H,  $\beta$ -C<sub>2</sub>P; I, HAp and J, FAp.

| TABLE III | Crystal | phases | present | in  | specimens | after | calcination  | and | sintering |
|-----------|---------|--------|---------|-----|-----------|-------|--------------|-----|-----------|
| INDED III | Crystar | phases | procent | *** | opeenieno | ancor | outerination | and | Shirefing |

| Specimen                                                                                                                                                                                                   | Phases                                                                                                                                                                   |                                                                                                                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                            | Calcined                                                                                                                                                                 | Sintered                                                                                                                                                                                          |  |  |  |
| $2CaO \cdot P_2O_5, 2N005, 2A01$ 2N01 2M01 2M05 2A05 2S01 2MA01, 2MS01 2AS01                                                                                                                               | β-C <sub>2</sub> P<br>β-C <sub>2</sub> P<br>β-C <sub>2</sub> P<br>β-TCP, β-C <sub>2</sub> P <sup>a</sup><br>β-C <sub>2</sub> P, β-TCP <sup>a</sup><br>β-C <sub>2</sub> P | β-C <sub>2</sub> P<br>β-TCP<br>β-C <sub>2</sub> P, β-TCP <sup>a</sup><br>β-TCP<br>β-TCP<br>β-C <sub>2</sub> P, β-TCP <sup>a</sup><br>β-C <sub>2</sub> P, β-TCP <sup>a</sup><br>β-C <sub>2</sub> P |  |  |  |
| 2NMAS01<br>2NMS01, 2NAS01 }<br>2MAS01 }                                                                                                                                                                    | β-TCP<br>β-C <sub>2</sub> P, β-TCP <sup>a</sup>                                                                                                                          |                                                                                                                                                                                                   |  |  |  |
| $\begin{array}{c} 2NMAS05\\ 3CaO \cdot P_2O_5, 3N005 \ 05\\ 3S01, 3S05\\ 3NM01, 3NA01, 3NS01\\ 3MA01, 3MS01, 3AS01\\ 3NMA01, 3NMS01, 3NAS01\\ 3MAS01, 3NMAS05\\ 10/3CaO \cdot P_2O_5, 10/3N01 \end{array}$ | β-ТСР                                                                                                                                                                    | β-ТСР                                                                                                                                                                                             |  |  |  |
| $4CaO \cdot P_2O_5$                                                                                                                                                                                        | β-ΤСΡ                                                                                                                                                                    | α-TCP, HAp <sup>a</sup>                                                                                                                                                                           |  |  |  |
| 4NMA01, 4NMS01<br>4NAS01<br>4MAS01<br>4NMAS05                                                                                                                                                              | β-TCP, HAp <sup>a</sup><br>β-TCP, HÁp <sup>a</sup><br>β-TCP, HAp <sup>a</sup><br>Ca <sub>3</sub> Na <sub>2</sub> P <sub>4</sub> O <sub>16</sub> , β-TCP <sup>a</sup>     | HAp, β-TCP <sup>a</sup><br>α-TCP<br>β-TCP, α-TCP <sup>a</sup><br>Ca <sub>5</sub> Na <sub>2</sub> P <sub>4</sub> O <sub>16</sub> , MgAl <sub>2</sub> O <sub>4</sub> <sup>a</sup>                   |  |  |  |
| $5CaO \cdot P_2O_5$                                                                                                                                                                                        | β-TCP, HAp <sup>a</sup> , CaO <sup>a</sup>                                                                                                                               | HAp                                                                                                                                                                                               |  |  |  |
| $6CaO \cdot P_2O_5$                                                                                                                                                                                        |                                                                                                                                                                          | HAp, α-TCP <sup>a</sup> , CaO <sup>a</sup>                                                                                                                                                        |  |  |  |
| 2F01                                                                                                                                                                                                       | $\beta$ -C <sub>2</sub> P, FAp <sup>ab</sup>                                                                                                                             | β-TCP                                                                                                                                                                                             |  |  |  |
| 3F01<br>4F01<br>FAC<br>FACN01<br>FACN05                                                                                                                                                                    | FAp, β-TCP <sup>a</sup><br>FAp, β-TCP <sup>a</sup><br>FAp<br>FAp<br>CaO, β-CaNaPO <sub>4</sub> <sup>a</sup>                                                              | FAp<br>β-TCP, FAp <sup>a</sup><br>α-TCP, FAp <sup>a</sup><br>β-TCP<br>β-CaNaPO <sub>4</sub>                                                                                                       |  |  |  |
| FACNM01<br>2G1<br>2G2                                                                                                                                                                                      | FAp<br>β-TCP, CaSO <sub>4</sub><br>CaSO <sub>4</sub> , β-TCP                                                                                                             | MgO, FAp<br>β-TCP<br>HAp                                                                                                                                                                          |  |  |  |

<sup>a</sup> Minor phases.

<sup>b</sup> Fluorapatite.

C<sub>2</sub>P calcium pyrophosphate; TCP, tricalcium phosphate; HAp, hydroxyapatite.

Fig. 3, in which the horizontal axis expresses the shrinkage of green bodies during sintering. As is seen from the figure, the value of  $\sigma$  increases with decreasing porosity, and 3F01, FCA and 4NMA01 exhibited irregularly high strengths.

Those results can also be evaluated in relation to the phases present in the sinters. Fig. 4 summarizes the  $\sigma$ -phase relation, indicating the  $\sigma$ -order of HAp > TCP > C<sub>2</sub>P for non-additive calcium phosphates, and FAp with TCP  $\gg \alpha$ - and  $\beta$ -TCP, C<sub>2</sub>P with  $\beta$ -TCP > C<sub>2</sub>P for calcium phosphates with additives. In the case of single-doping, the following order was found in the effect of improving the strength: Na<sub>2</sub>O  $\gg$  CaF<sub>2</sub> > Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>. For complex addition the effect was most marked in the combination of Na<sub>2</sub>O-MgO-Al<sub>2</sub>O<sub>3</sub>.

The effect of the amount of an additive was estimated in calcium phosphates with  $Na_2O$  added. The result is shown in Fig. 5. It is seen that the addition of about 0.15 mol mol<sup>-1</sup>  $P_2O_5$  was the most efficient.

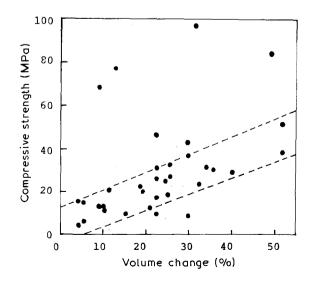



Figure 3 The effect of porosity on the compressive strength of various calcium phosphates ceramics. The volume change on the horizontal axis expresses the shrinkage of green bodies during sintering.

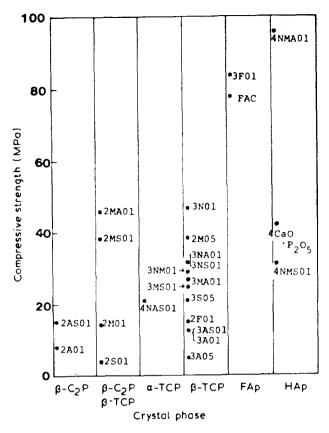



Figure 4 Compressive strength-phase relationship for various calcium phosphates ceramics.

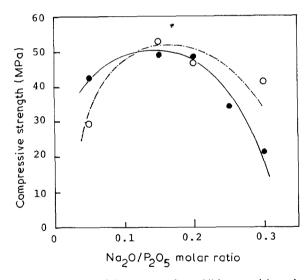



Figure 5 The effect of the amount of an additive on calcium phosphates with  $Na_2O$  added.

# 4.4. Effects of additive on chemical durability of sintered calcium phosphates

Water durability was excellent in all of the specimens. Table IV lists the decrease in weight of some sinters after immersion for 315 h in water at room temperature.

The acidic (2% citric acid) durability of those calcium phosphates is shown in Fig. 6, indicating dissolution was almost linear with time. Table V summarizes the acidic durability of some specimens. The specimens of 3S05, 3NM01 and 3F01 exhibited superior durability. As shown in Fig. 7, however, the

TABLE IV Water durability

| Specimen            | Decrease in weight<br>after 315 h (%) |
|---------------------|---------------------------------------|
| $2CaO \cdot P_2O_5$ | 0.2                                   |
| 3NS01               | 0.2                                   |

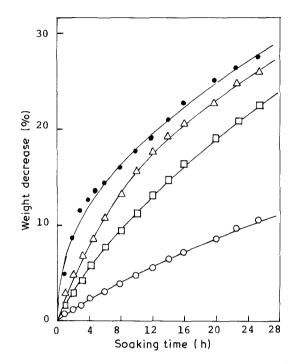
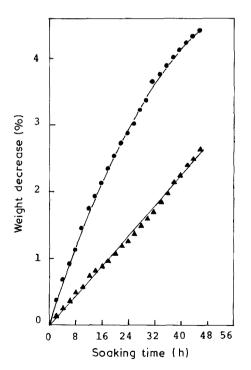




Figure 6 Change with time of the weight of some calcium phosphate ceramics immersed in 2% citric acid. Specimens: ( $\bigcirc$ ) 3MAS01, ( $\square$ ) 4NMA01, ( $\triangle$ ) 4MAS01 and ( $\oplus$ ) 4NAS01.



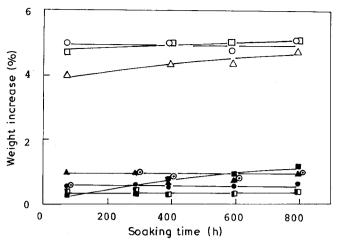
*Figure 7* Change with time of the weight of some calcium phosphate ceramics immersed in 2% citric acid. Specimens: ( $\bullet$ ) FAC and ( $\blacktriangle$ ) FACN01.

specimens of FAC and FACN01 gradually dissolved to a considerable degree in the solution.

The durability of the calcium phosphates in alkaline aqueous solution was also excellent. Fig. 8 shows the

TABLE V Acidic durability of various calcium phosphates

| Solvent        | Soaking<br>time (h) | Specimen               | Decrease in<br>weight (%) |  |
|----------------|---------------------|------------------------|---------------------------|--|
| 2% citric acid | 192                 | 2MS01                  | 14.6                      |  |
|                | 192                 | 3805                   | 6.8                       |  |
|                | 192                 | 3NM01                  | 7.7                       |  |
| 5% citric acid | 635                 | $10/3CaO \cdot P_2O_5$ | 60.4                      |  |
|                | 635                 | $4CaO \cdot P_2O_5$    | 59.8                      |  |
|                | 635                 | $5CaO \cdot P_2O_5$    | 37.1                      |  |
|                | 635                 | 3F01                   | 36.8                      |  |
|                | 635                 | 2NMAS04                | 49.8                      |  |
|                | 635                 | 3NMAS05                | 56.7                      |  |
|                | 635                 | 4NMAS05                | 42.5                      |  |


change with time of the weight of some specimens immersed in 1 M NaOH, indicating that additives were effective in improving the alkaline durability of calcium phosphates.

# Acknowledgement

This work was partly supported by Grant-in-Aid for Special Project Research (Development of Electronic Thin Films) from Tokyo Metropolitan University.

# References

- 1. W. R. RAO and R. F. BOEHEM, J. Dent. Res. 53 (1974) 1351.
- 2. M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.



*Figure 8* Durability of calcium phosphate ceramics in alkaline aqueous solution. Specimens: ( $\bigcirc$ ) 4CaO·P<sub>2</sub>O<sub>5</sub>, ( $\Box$ ) 5CaO·P<sub>2</sub>O<sub>5</sub>, ( $\triangle$ ) 3F01, ( $\blacktriangle$ ) 2F01, (o) 10/3N01, (o) 10/3CaO·P<sub>2</sub>O<sub>5</sub>, ( $\blacksquare$ ) 2G1 and ( $\blacksquare$ ) 2G2.

- 3. H. MONMA, H. NAKAJIMA and H. HASHIMOTO, J. Dent. Eng. 79 (1986) 29.
- 4. J. G. JPEELEN, B. V. REJDA and K. DE GROOT, Philips Tech. Rev. 37 (1977) 234.
- 5. M. AKAO, H. AOKI and K. KATO, J. Mater. Sci. 16 (1981) 809.
- 6. B. V. REJDA, J. G. JPEELEN and K. DE GROOT, J. Bioeng. 1 (1977) 93.

Received 16 June and accepted 8 November 1989